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Abstract

A model to forecast one-hour lead Dst index is proposed. Our approach
is based on artificial neural networks (ANN) combined with an analytical
model of the solar wind-magnetosphere interaction. Previously, the hourly
solar wind parameters have been considered in the analytical model, all of
them provided by registration of the ACE satellite. They were the solar wind
magnetic field component B,, velocity V', particle density n and temperature
T. The solar wind parameters have been used to compute analytically the
discontinuity in magnetic field across the magnetopause, denoted as [By].

This quantity has been shown to be important in connection with ground
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magnetic field variations. The method was published, in which the weighted
sum of a sequence of [B;] was proposed to produce the value of Dst index.
The maximum term in the sum, possessing the maximum weight, is the one
denoting the contribution of the current state of the near-Earth solar wind.
The role of the older states is less important — the weights exponentially
decay. Moreover, the terms turn to zero if B, > 0. In this study, we set up
a more comprehensive model on the basis of the ANNs. The model is driven
by input time histories of the discontinuity in magnetic field [B,], which are
provided by the analytical model. At the output of such revised model, the
Dst index is obtained and compared with the real data records. In this way
we replaced those exponential weights in the published method with another
set of weights determined by the neural networks. We retrospectively tested
our models with real data from solar cycle 23. The ANN approach provided
better results than a simple method based on exponentially decaying weights.
Moreover, we have shown that our ANN model could be used to predict Dst
one hour ahead. We assessed the predictive capability of the model with a
set of independent events and found correlation coefficient C'C' = 0.74+0.13
and prediction efficiency PE = 0.44 4+ 0.15. We also compared our model
with the so called Dst-specification models. In those models, the Dst in-
dex was derived directly through an analytic or iterative formula or a neural
network-based algorithm. We showed that the performance of our model was

comparable to that of Dst-specification models.
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1. Introduction

Nowadays, there is an increasing demand to understand and predict con-
ditions in the near-Earth space driven by the solar activity. Global mag-
netohydrodynamic (MHD) computational models based on first principles
(Baker et al., 2004; Gombosi et al., 2001; Goodrich et al., 2004; Odstréil et
al., 2004; Siscoe et al., 2004; Téth et al., 2012; Tsyganenko, 2013) are some
examples of major thrusts in this effort. On the other hand, the use of em-
pirical models for the purposes of forecasting has the advantage of being less
computationally demanding than the MHD models. The goal is to develop
short-term models which can take into account the observed features of the
solar wind-magnetosphere interaction while being computationally simple
and possessing real-time forecasting capability.

In Alexeev and Feldstein (2001), the dynamic paraboloid magnetospheric
field model has been developed and applied for the evaluation of a variety of
magnetospheric current systems and their contribution to the ground mag-
netic field variations during magnetic storms. In later studies by Romashets
et al. (2005, 2008), a 3D paraboloid model of the solar-wind magnetospehere
interaction has been proposed to evaluate the magnetic field in the near-Earth
space environment. In Romashets et al. (2005), an attempt has been made
to describe the magnetosheath field as given by a scalar potential, which
implies a current-free approximation. In order to involve finite currents, in
Romashets et al. (2008), the magnetic field has been determined by a vec-
tor potential. The model studied in Romashets et al. (2008) has been also
shown to be useful for studying the solar wind-magnetosphere interaction.

As a result, a function measuring the discontinuity in magnetic field across
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the magnetopause, denoted as [By], has been expressed analytically. In Ro-
mashets et al. (2008), this quantity has been pointed out to be important in
connection with ground magnetic field variations.

Geomagnetic activity can be characterized by geomagnetic indices, the
most common being the Dst index. This index serves as a good measure
of the overall strength of the near-Earth global electric currents, especially
the ring current, thereby providing a good measure of geomagnetic storm
intensity. Correlations between the Dst index and possible external drivers
can provide the basis for empirical prediction (Burton et al., 1975; Siscoe et
al., 2005).

The use of advanced techniques such as ANNs is found to be effective
in predicting Dst. The modeling capability of an ANN lies in its ability to
learn the mappings of underlying input-output features.  If the network
is designed and trained properly, it can perform generalisation rather than
simple fitting of the function, see Gurney (1997); Hertz et al. (1991). This
approach is rather useful when information and understanding of a physical
system are lacking.

The ANN can be fed with the data on solar wind or solar activity (in-
put data) and it can be trained to provide the caused geomagnetic activity
(output). The ANNs are thus usable for the forecasting of the geomag-
netic activity (e.g. Andrejkova et al., 1997; Valach et al., 2007, 2009). This
method has been widely used for the real-time modeling of the geomagnetic
responses to solar wind disturbances, e.g. Boberg et al. (2000), Lundstedt
(1992), Lundstedt et al. (2002), and Wu and Lundstedt (1996). For instance,
the model developed by Lundstedt et al. (2002) consists of a recurrent neural
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network that requires the hourly averages of the solar wind parameters as
inputs and predicts the Dst index in almost real-time.

The underlying study is a contribution towards the Dst index modeling
on the basis of the model proposed in Romashets et al. (2008). We employ
the method of ANN to develop a revised version of the model, hereafter re-
ferred to as the revised RPV model. Unlike the approach by Lundstedt et al.
(2002), where the solar wind parameters are used directly as the ANN input,
here we feed the ANN with past hourly means of the function [B;] known
from Romashets et al. (2008). As such, the presented ANN model can be
thought as driven by input time histories of the solar wind-magnetosphere
interaction. We obtain the Dst index series as the ANN output and compare
it with the real data records. We evaluate the model for the set of intense geo-
magnetic storms of the 23-rd solar activity cycle. This study concerns strong
geomagnetic storms because the intense events and their impacts on the ter-
restrial environment interest the space weather community (e.g. Echer et al.
(2010), Gopalswamy et al. (2005), Siscoe et al. (2006), Srivastava (2005b),
Srivastava and Venkatakrishnan (2004), Szajko et al. (2013) and Zhang et
al. (2003)). Nevertheless, we must also admit a disadvantage of such a treat-
ment: The downside of focusing on extreme storms is the limited number
of the observed events, which partly reduces the potency of our arguments
when drawing conclusions.

The paper is organised as follows. In Section 2, the data resources are
specified. Development of the revised model for the Dst index and the results

are presented in Section 3. The main findings are summarized in Section 4.
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2. Data used

In Romashets et al. (2008), the Dst index for the so-called Bastille day
event, on 14-15 July 2000, has been computed using the hourly solar wind
parameters: the solar wind magnetic field component B,, velocity V', particle
density n and temperature T'; all of them provided by registration of the ACE
satellite operating at the libration point L1.

In this study, 16 major geomagnetic storms from solar cycle 23 are con-
sidered, as listed in Tab. 1 (according to Table 1 in Tripathi and Mishra
(2006)). Note, that two successive storms of November 2004 are treated as
a single event. For each of the events considered, the series of the model
Dst index is computed. The observed true Dst values, required to com-
pare with the model values, were obtained from the World Data Center for

Geomagnetism, Kyoto.

3. Models and results

In what follows, the revised model for the Dst index will be developed by
combining the original analytical model by Romashets et al. (2008) with the
approach of ANN. First, the analytical expression for the jump in magnetic
field [B;] will be shown. The original model by Romashets et al. (2008) will
be referred to as the primal RPV model, with its output denoted as DstP.
This model will be evaluated for the set of geomagnetic storms considered
and the need for its revision will be argued. As a preliminary step, a neural
network model without hidden neurons will be presented, referred to as the
preliminary revised RPV model, with its output denoted as Dst™. The final

revised version of this model will be constructed involving the neural network

6
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possessing hidden layer and will be referred to as the revised RPV model, with
its output denoted as Dst™". Hereafter, the notation Dst will stand for the

observational data record.

3.1. Analytical expression for the jump in magnetic field

Considering the magnetopause as paraboloidal in shape, Romashets et
al. (2008) constructed an analytical representation of magnetic fields in the
region where the solar wind interacts with the Earth’s magnetosphere. The

paraboloidal coordinates (o, 7, ¢) were adopted, defined by

1
v o= S0P, (1)
Yy = OT Cosyp, (2)
z = oTSsinp, (3)

where x, y, z are solar ecliptic coordinates, with axis x pointing to the
Sun. The components of magnetic field have been expressed analytically
in paraboloidal coordinates. The full development of this analytical model
can be found in Romashets et al. (2008) and will therefore not be reproduced
here.

Magnetic field exhibits a discontinuity in tangential component when
moving across the magnetopause from the solar wind (the IMF) to the magne-
tosphere (the internal field). There is no normal component of the magnetic
field at the magnetopause. Romashets et al. (2008) used the notation [B]
for the magnitude of the jump in magnetic field across the magnetopause
and argued for the relevance of this quantity for modeling the geomagnetic

activity. We refer to the final expression for [B,] (Section 5 in Romashets et
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al. (2008)) which reads

V. 106\ /2 no\/2 [V
42629 (2= ) (=)  —1| —34.21 (;”> Yo )y
629 (500) (Too) 342109 (= (500) (4)

Here, the subscript co stands for the undisturbed solar wind parameters far

[Bt] = Bz

before the interaction with the magnetosphere, V., is the velocity measured

in kms™!, n. is the particle density measured in ecm=3, T is the temper-
ature measured in K, B, represents the z—component of the interplanetary
magnetic field (IMF) measured in nT and the model Dst? index is measured

innT.

3.2. Primal RPV model
In Romashets et al. (2008), the time histories of the jump in magnetic
field [B;] have been related to the geomagnetic activity measured in terms of

the Dst?P index as a weighted sum
12

Dst? = 52 zy exp(—k/12). (5)
k=0
Here, the entry functions xj, are defined as
1
o, = 51 — sgn(Bay)][ Bl (6)

and £ is the free parameter to be determined. The index k denotes the
contribution to the geomagnetic disturbance of flows that came in £ hours
ago. In (6), the sign function is involved because the south orientation of
the IMF is known to be crucial for the development of strong geomagnetic
activity. The free parameter ¢ in (5) can be computed to minimize the

normalized mean square error defined by
M

1
NMSE" =+ > (Dst? — Dst,)* | (7)

s=1

8
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where M is the length of the record (in hours).

In Romashets et al. (2008), the model Dst? index given by (5) has been
compared with the real Dst index for the so-called Bastille day event. In
this study, we attempted to use the same technique for the set of intense
geomagnetic storms considered, i.e. the 15 events (Tab. 1). We evaluated
the primal RPV model, computed the common free parameter £ using (7)
over all the event records and obtained the value £ = 0.0058. With the single
free parameter £ to be computed, poor agreement was achieved between the
primal RPV model output and the set of observational data, as shown in
Figs. 4a,b (green line). That is why, we intended to revise the model given

by (5) and suggested a more general approach based on the method of ANN.

3.3. Preliminary revised RPV model

In the primal RPV model given by (5), the consecutive hourly means of
[B;] given by (4) were multiplied by an exponential weighting function. In
subsequent analysis, the idea was to drop the exponential term exp (—k/12)
in (5) and thus leaving the weights unspecified. To determine the weights
corresponding to particular hourly means of [B;], we adopted the ANN
without hidden neurons. We designed the ANN to consist of 13 input neurons
and one output neuron; 13 values of the entry function x; given by (6) were
used to feed the ANN model, with the Dst™ index obtained at the output.

Mathematically, the ANN model without hidden neurons can be ex-
pressed as

1

Dst" = 12 : (8>
1+ eXp[_(Zj:O w;z; — O)]
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In the above formula, the input vector x; (for j = 0 to 12) consists of the
entries given by (6) and w; (for j = 0 to 12) is the vector of weights to
be found. Function © characterizes the sensitivity threshold of the output
neuron. Note, that the model of ANN expressed by (8) resembles the logis-
tic regression model adopted in Srivastava (2005a, 2006) for predicting the
occurrence of intense geomagnetic storms.

The vector of weights w; (for j = 0 to 12) can be determined by the
training process. We used the standard backward propagation algorithm
(e.g. Gurney, 1997; Hertz et al., 1991) to train the neural networks. The
algorithm is based on minimizing the normalized mean square error defined

as
M

NMSE" = # > (Dsty — Dst,)? (9)
s=1
where M is the number of training patterns, i.e., the sets of data consisting
of 13 input and 1 output values. The training process is usually initiated
by random shooting of the components of the vector of weights, sensitivity
thresholds of the neurons and some other control parameters, with fixed
number of the iteration steps.

Here, the ANN was trained repeatedly with as many as 101 runs. We
performed such a high number of runs because the result of training, i.e.
the resulting vector of weights, slightly depended on the initial values of the
vector of weights, which were set as a vector of small random numbers. In

order to eliminate this inaccuracy, the median vector was computed from 101

resulting vectors!. Knowing the vector of weights enables us to determine

!Each element of the final vector was computed as the median from the corresponding

10
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the importance of particular contributions of the ANN input given by (6)
for each of the 13 time intervals. In Fig. 1, the weights at particular one-
hour intervals are shown. We observe that the components of the weighting
vector decrease with backward time intervals. However, for the current time
interval, when the Dst™ index is evaluated, the contribution to the weight is
negligible. This is in contrast to the primal RPV model, where the current
solar wind input is considered with maximum weight. This finding is the

main reason why the preliminary revised RPV model is presented in this

paper.

3.4. Rewised RPV model

Consequently, we included a hidden layer of neurons into the ANN model
thereby setting up a more general model. In the case of ANN possessing
hidden layer, there were more variables to be adjusted and therefore we
expected to achieve more accuracy with observational data.

In Section 3.3 we found that the contribution of the current state of the
near-Earth solar wind was small in the ANN model (see the value of the
weight for step 0 in Fig. 1), hence it could be omitted. = We considered
contributions of only past time intervals as the ANN entries. The values
of [By] and sgn(B,), appearing in the entry function defined by (6), were
taken as the ANN inputs. Leaving out the components for the current time
interval, the input vector consisted of 24 components, with 2 components for
each time interval. The model values of index Dst™ were expected as the

ANN output.

elements of 101 vectors of weights.
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Mathematically, the ANN with a hidden layer consisting of H neurons

can be expressed as

1

Dst™ = Fp—— ZH (W, 1 )]
PIT i W i o [ (57 Wi s X 00)]

(10)

In the above formula, for ¢ = 1 to H and j = 1 to 24, X, is the input
vector consisitng of 12 values of [B;] and 12 values of sgn(B,), W;; is the
weighting matrix characterizing the strength of the connection between the
j-th input and the i-th hidden neuron, W; stands for the weight between
the i-th hidden neuron and the output neuron and vector ©; characterizes
the sensitivity threshold of the hidden neurons. For the ouput neuron, the
sensitivity threshold is set to 0. The number of the hidden neurons H is a
free parameter to be determined.

According to the conventional routine, the 15 events considered (Tab. 1)
were divided into three sets; each of them intended to be employed for a dif-
ferent purpose: 7 storms as training patterns, 4 storms as validation patterns
and 4 storms for independent test. Random selection was used to assign the
events to the three categories. The training patterns were used for running
several ANNs with different number of hidden neurons. Then, we employed
validation tests to search for the proper ANN architecture. The value of H
has been varied from H = 1 to 36. The validation patterns were used for
performance tests of each type of the ANN. We used quantitative measures to
compare the performance in terms of the correlation coefficient CCyy N and
the root mean square error RMSE ny, see Figs. 2.3. We plotted the results
of all independently accomplished trainings as well as the medians. For the

neural networks with small number of hidden neurons, which showed better

12
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results than those with more hidden neurons, the trainings were repeated
several times.  We did so because the results of the training of a neural
network depended slightly on the initialization of the inter-neuron connec-
tions (weights) and the sensitivity thresholds - the initial values were set to
small random numbers. The dispersion of the data visible in the graphs was
caused by this effect. We have found the ANNs possessing the least num-
ber of hidden neurons to provide best results, namely for H = 1 to 4, we
evaluated CCyyy = 64.9 £ 8.6 and RMSE vy = (301 + 13) nT. We fixed
H = 3 for the optimum ANN with hidden neurons. By common practice, the
learning rate and the momentum term were set to 0.1 and 0.6, respectively.
We checked that varying these values within a reasonable range caused prac-
tically no change in the result of the training. The maximum number of the
learning epochs was set to 100. However, the trainings were mostly termi-
nated before reaching 100 epochs under the following rule: After achieving
the local maximum of the correlation between the ANN outputs and the de-
sired outputs, ten more learning epochs were performed. The training was

stopped when the results of the local maximum remained unsurpassed.

3.5. Results and skill scores

The series of the Dst™ index as the revised RPV model output are shown
in Figs. 4a,b (red line). Much closer agreement with the observational Dst
index is now obtained. Motivated by the study of Rastéitter et al. (2013),
we employed two types of skill scores, the correlation coefficient C'C' and
the prediction efficiency PFE, to quantitatively asses the revised RPV model

performance. The correlation coefficient C'C' between the series of Dst™ and
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Dst is defined as
S M (Dst, — Dst)(Dst"™ — Dst™)

\/Zi\il(DstS — D_ﬁ)Q\/Zi\il(DSth — Dst™m)?

where Dst™ and Dst stand for the arithmetic means of the series of Dst™

cC , (11)

and Dst, respectively, and M is the length of the record. Using the same

notation, the prediction efficiency PFE for a discrete time series is defined as

Zé\;(DSts — Dst}")?
Z£1(D5ts — Dst)? ‘

The value PE = 1 indicates perfect model performance and PE = 0 indicates

PE=1-

(12)

performance comparable to predicting the arithmetic mean of the observed
signal. PE can reach unlimited negative values. The values PE < 0 occur
when the observed mean is a better predictor than the model. In contrast to
the correlation coefficient, PE includes the amplitude of the modeled signal
in addition to the shape of the time series. Signals with good correlation but
incorrect amplitudes may result in negative PFE scores.

The skill scores for each particular event are shown in Tab. 1. We run the
revised RPV model with the set of independent test events listed in Tab. 1
in order to assess the model accuracy. For the event of May 1998, the model
run scored poorly; we obtained the skill scores as low as CC' = 0.33 and
PE = —0.64. The event of May 1998 is a long duration storm with rather
complex Dst index record and therefore appears to be difficult to capture by
the model. As such, we excluded this particular test event from the statistics
and considered only the remaining independent test events, i.e. the events
of Oct 1999, Aug 2000 and Nov 2004. Similarly as in Table 3 in Rastéatter
et al. (2013), we evaluated the averages and standard deviations for the skill

scores and found CC = 0.74 £ 0.13 and PE = 0.44 £+ 0.15.
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In Rastétter et al. (2013), various types of the Dst prediction models were
subject to ranking. Among others, the class of so called Dst-specification
models was assessed, in which the Dst index was derived directly through
an analytic or iterative formula or a neural network based-algorithm. The
revised RPV model falls into the class of the Dst-specification models. As
shown in Table 3 in Rastétter et al. (2013), the skill scores for the Dst-
specification models range from C'C' = 0.58 £ 0.35 and PE = 0.18 £ 0.56 to
CC =0.92+0.07 and PE = 0.78£0.21. The performance of the revised RPV
model quantified in terms of the skill scores C'C' and PE can be compared

with the performance of the Dst-specification models.

4. Discussion and conclusions

In this study, the value of the discontinuity in magnetic field [B;] across
the magnetopause known from the model by Romashets et al. (2008) was
treated in connection with ground magnetic field variations. We have re-
vised the model using the method of ANN in order to assess the weights
corresponding to time histories of the function [B;]. A new time prediction
model to represent the Dst index has come out of our study. We named the
new model the revised RPV model.

We have found, that the most relevant input to the revised RPV model
was the one which represented the value of [B;] one hour prior to the period in
which the Dst index was computed. On the other hand, we have shown that
the current contribution from the function [B;] to the Dst index value was
negligible (Fig. 1). As such, the model for producing the series of the Dst

index can be considered to be a one-step ahead forecast instead of nowcast.
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On physical grounds, the revised RPV model responds to the fact that there
is a time delay of the order of one hour between the solar wind-magnetosphere
interaction and development of geomagnetic activity.

As regards the time lapse between solar wind parameters and geomagnetic
effect, in Borovsky and Funsten (2003) the solar wind-magnetosphere cou-
pling has been investigated with the effect of MHD turbulence. In Borovsky
and Funsten (2003), the correlation between the amplitude of the MHD tur-
bulence in the upstream solar wind and the amplitude of the Earth’s ge-
omagnetic activity indices has been explored. The correlations have been
performed both with and without a one-hour time lag between the solar
wind parameters and the geomagnetic indices. As shown in Borovsky and
Funsten (2003), the correlations between the turbulence amplitudes and the
Dst index were weak. However, the correlations improved if a several-hour
time lag was introduced between the solar wind measurements and the mea-
surement of the Dst index.

To measure the performance of models for the Dst index prediction,
various types of skill scores have been employed (Ji et al., 2012; Rastéatter et
al., 2013). In Table 3 in Rastétter et al. (2013), three classes of the Dst index
prediction models were subject to ranking. They were the 3D magnetosphere
models, the ring current kinetic models and the Dst-specification models. As
pointed out in Rastétter et al. (2013), model ranking varied widely by skill
score used and none of the models consistently performed best for all events.

The revised RPV model developed in this study, falls into the class of
the Dst-specification models. We quantified its performance in terms of two

types of skill scores, the correlation coefficient C'C' and the prediction effi-
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ciency PE (Tab. 1). In case of long-duration geomagnetic storms or those
with a more complex Dst index record, the runs of the revised RPV model
scored poorly. For these events low values of the correlation coefficient and
negative values of the prediction efficiency were obtained. On average, per-
formance of the revised RPV model in terms of the skill scores is comparable
to that of the Dst-specification models, according to the model ranking chart
shown in Table 3 in Rastétter et al. (2013). However, exact comparison and
inclusion to the ranking chart in Rastétter et al. (2013) is not possible, due
to different selection of events and different lengths of data records.

In this study, we pointed out the relevance of the quantity [By] as a
measure of the solar wind-magnetosphere interaction in connection with the
geomagnetic response modeling. We have also demonstrated, that relying
on the ANN approach it is possible to enhance modeling capability of the
primal model proposed by Romashets et al. (2008) and improve its response
to observational data. As we bounded our study to strong geomagnetic
storms, the restricted number of observed events has to be considered to be
a limiting factor to our conclusions. In future studies, it could be valuable
to modify the model to produce the so-called dynamic pressure corrected
Dst index (known as Dst*), which takes into account the motion of the

magnetopause currents Burton et al. (1975).
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Table 1: Intense geomagnetic storms during solar cycle 23, according to Table 1 in Tripathi
and Mishra (2006), their usage in the revised RPV model and the values of correlation
coefficient C'C and prediction efficiency PE. The final values of Dst,,;, are listed, accord-

ing to the Kyoto WDC. Note: In Table 1 in Tripathi and Mishra (2006) the provisional

values of Dst,,;, have been considered.

Event Date Onset  Dstpin Usage ccC PE
May 1998 04/05/1998 6 UT  -205 test 0.33 -0.64
Sep 1998  25/09/1998 10 UT  -207  validation 0.71 0.42
Oct 1999  22/10/1999 6 UT  -237 test 0.59 0.31
Apr 2000 07/04/2000 1UT  -288 training  0.61 0.19
July 2000 15/07/2000 22 UT  -301 training  0.68 0.21
Aug 2000 12/08/2000 10 UT  -235 test 0.82 0.40
Mar 2001 31/03/2001 9 UT  -387 training  0.79 0.48
Apr 2001  11/04/2001 23 UT  -271 training  0.38 -0.01
Nov 2001a 06/11/2001 6 UT  -292 training  0.90 0.80
Nov 2001b 24/11/2001 15 UT  -221 training  0.34 -0.01
Oct 2003  30/10/2003 23 UT  -383  validation 0.76 0.54
Nov 2003  20/11/2003 20 UT  -422  validation 0.84 0.64
Nov 2004  08/11/2004 7UT  -373 test” 0.81 0.60
Nov 2004  10/11/2004 10 UT  -289 test* 0.81 0.60
May 2005 15/05/2005 8 UT  -263  validation 0.58 0.28
Aug 2005 24/08/2005 11 UT  -216 training  0.80 0.31

Note *: The two storms of November 2004 were treated as one test event.
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Figure captions

Fig. 1. The plot of weighting vector w; components. For each backward
time interval, 7 = 0 to 12, whisker boxes are shown, with upper and lower
quartiles and medians (thick bars). In total, 101 values at each time interval
were considered, as a result of 101 runs of the preliminary revised RPV model

without hidden neurons.

Fig. 2. Correlation coefficient C'Cyyy for the ANN with hidden layer of

neurons in dependence on the number of hidden neurons.

Fig. 3. Root mean square error RMSE 4y for the ANN with hidden layer

of neurons in dependence on the number of hidden neurons.

Fig. 4a. Observational and modeled series of the Dst index for the sets of

training data.
Fig. 4b. Observational and modeled series of the Dst index for the sets of

validation data and independent test data. Legend explaining the meaning

of individual lines is shown in Fig. 4a.

25

This is the author's version of a manuscript that was accepted for publication in Journal of Atmospheric and Solar-Terrestrial Physics. The definitive version was subsequently published in:

Milo§ Revallo, Fridrich Valach, Pavel Hejda and Josef Bochnicek: A neural network Dst index model driven by input time histories of the solar wind-magnetosphere interaction.

Journal of Atmospheric and Solar-Terrestrial Physics, Volumes 110-111, April 2014, Pages 9-14. DOI: 10.1016/7.jastp.2014.01.011

-~
(e
<r‘
~
=
T
1S
A
=
°o
~
2]
D
©n
=
f<b)
(]
o
—
.
a0
)
o
w0
=
g
S
o
[
=3
o
i)
fao]
j<>
~
=3
~
~
2
)
)
=
[
w0
=
[
o
-
—
S
S
[
=
[
=
—
=
o
(5
(<5
=
)
—
[}
E
(<5
—
o
[a~]
—
]
]
=
3]
(5]
=1
o]
=
72]
o
=
o
-
2]
—
[
=3
o
o
o
—~
o
w0
=
=1
o]
=
w0
-
=
=
[ce)
~—
()
N
e



[ an-onAs (D) /0" ¥/Pu-0u-£q/s8SUBITT /310" SUOMIOd8ATISID// :d19Y 8SUSDTT (' (N-DN-AG-00 OU3} Iepun oqeTTeAe epem ST uoTsIeA jdTIosnmen STY] ‘8107 ©
TT0° 70 v70¢ G358l [/9701 07 100 71-6 S00ed '710C 144V "T11-01} SOWN[O] 'S07SAU] [BI1356110]-1e[03 PUE OI1o4dS0u3y JO [eutnoy
"W0T0RIDIUT 910UdS015USRU-PUTA TRTOS oYY JO SATI0NSTY aWry 4ndur Aq USATIP TOPOW XOpUT 4S( YIOMISU TRINSU § :YPITUYI0g Josor pue eplof ToAed ‘UORTR) UOTIPTI ‘OTTRASY SOTTH
TUT poyST{qud ATUANDASANS SEA UOTSIOA OATITUTJOp O]  SoTSAU] [PTI1S0119]-Te10g PUe JTIoUJSOUTy JO [BUINO[ UT UOTIBOTqnd I0] Poldoooe Sem 1eq] 1dTIOSHuel © Jo UOTSISA §,J0YJNe oU7 ST STYJ

— |
I

6
time steps [h]

—10

—11

—12

Figure 1
5
4
3
2
1
0

-1
-2
-3
—4



[ an-on-ra (D) /0" ¥/Pu-0u-£q/s8SUBITT /310" SUOMIOd8ATISID// :d19Y 8SUSDTT (' (N-DN-AG-00 OU3} Iepun oqeTTeAe epem ST uoTsIeA jdTIosnmen STY] ‘8107 ©
T10°T0°%702"d3seL"L/9T0T"0T *10Q "$1-6 Sdded "HI0C TTIAY "TTT-QTT SSUNTO) "SOTSAG{ IIISOLIS[-IBT0S pue J1Ioydsowly jo [euinof
"W0T0RIDIUT 910UdS015USRU-PUTA TRTOS oYY JO SATI0NSTY aWry 4ndur Aq USATIP TOPOW XOpUT 4S( YIOMISU TRINSU § :YPITUYI0g Josor pue eplof ToAed ‘UORTR) UOTIPTI ‘OTTRASY SOTTH

TUT poyST{qud ATUANDASANS SEA UOTSIOA OATITUTJOp O]  SoTSAU] [PTI1S0119]-Te10g PUe JTIoUJSOUTy JO [BUINO[ UT UOTIBOTqnd I0] Poldoooe Sem 1eq] 1dTIOSHuel © Jo UOTSISA §,J0YJNe oU7 ST STYJ

X
N IT)
N ™
\ o
™
. — 0
% N
X X < 2
/ | S
/ 5
N 22 2
/ > g
n=ll © c
/ DTN N &
/ rm ke
/ = K=}
X g £
s =] s
, = o
4 =]
g |lun 3
£
\ p=}
2
X
. o
i =
X ~
X X
X X
Ko X
n
K X
XK
XL X
o
L O~ 1 © 1 1w W T W M
N o © o v o ¥ o 9 o
=} =] =] =} =]

JUSI01J}202 UONEe[aII0D

Figure 2



[ an-on-Aa (D) /0" ¥/Pu-0u-£q/s8SUBITT /310" SUOMIOd8ATISID// :d19Y 8SUSDTT (' (N-DN-AG-00 OU3} Iepun oqeTTeAe epem ST uoTsIeA jdTIosnmen STY] ‘8107 ©
TT0° 10 710 G3SeL /9707 0F 100 77-6 S09ed 10 [1A4Y "T11-0F SOUN[0} 'S0I5Aqq [EI1750110]-1e[05 PUe DIIoqdsou3y Jo [BuInof
"W0T0RIDIUT 910UdS015USRU-PUTA TRTOS oYY JO SATI0NSTY aWry 4ndur Aq USATIP TOPOW XOpUT 4S( YIOMISU TRINSU § :YPITUYI0g Josor pue eplof ToAed ‘UORTR) UOTIPTI ‘OTTRASY SOTTH
TUT poyST{qud ATUANDASANS SEA UOTSIOA OATITUTJOp O]  SoTSAU] [PTI1S0119]-Te10g PUe JTIoUJSOUTy JO [BUINO[ UT UOTIBOTqnd I0] Poldoooe Sem 1eq] 1dTIOSHuel © Jo UOTSISA §,J0YJNe oU7 ST STYJ

7 l w
/ e
0 9
/ 25
25
2ol o
o <= @
e S
=]
=
. i=]
<
S 0
~
X X )
) c
\ — S
\ IS4
\ =1
\ [}
c
o
5
S
k=]
X =
| —
| S]
\ Ny
\ 9]
S n Qo
i —
i =
! p=4
X
o
X -
X
X XX
n
XK
MK
XK X
L o
© 0 ~ 0 © 0 T}
~ © [Ts)

[uun aaneal] aswy

Figure 3



[ an-on-ra (D) /0" ¥/Pu-0u-£q/s8SUBITT /310" SUOMIOd8ATISID// :d19Y 8SUSDTT (' (N-DN-AG-00 OU3} Iepun oqeTTeAe epem ST uoTsIeA jdTIosnmen STY] ‘8107 ©
T10°T0°%702"d3seL"L/9T0T"0T *10Q "$1-6 Sdded "HI0C TTIAY "TTT-QTT SSUNTO) "SOTSAG{ IIISOLIS[-IBT0S pue J1Ioydsowly jo [euinof
"W0T0RIDIUT 910UdS015USRU-PUTA TRTOS oYY JO SATI0NSTY aWry 4ndur Aq USATIP TOPOW XOpUT 4S( YIOMISU TRINSU § :YPITUYI0g Josor pue eplof ToAed ‘UORTR) UOTIPTI ‘OTTRASY SOTTH

TUT poyST{qud ATUANDASANS SEA UOTSIOA OATITUTJOp O]  SoTSAU] [PTI1S0119]-Te10g PUe JTIoUJSOUTy JO [BUINO[ UT UOTIBOTqnd I0] Poldoooe Sem 1eq] 1dTIOSHuel © Jo UOTSISA §,J0YJNe oU7 ST STYJ

S S 2
=) o « o —
= = =
= E = 3
© = T — - =
NS [ o = (]
- = = 2 = o A o} m
© ~ o = g
- 5 > m
— - o - &
= Nl o c © o
W o PO o — — = > — 2
— —
) < m o m g 3 g o) g —
2 Z o = 8 o = I - >
- - o - « ~ = 8 & 4
Z = >
=]
[=} o
5 SIS 5%
- -
c c = wn
9] o b N
>
in] ] @
o (=} (=}
© o 9 9o 9o 9o 9 o o o o o o o o o o o
n o w o w 9 o o 0 o re] 1] o ] o
rood H NN ™ ' — - Y ' — — N
' ' ' ' ' ' ' ' ' ' ' '
[1ul 1sq [1ul 1sa [1ul 1sa
o
Q S
o o o o o o
< < c
= = = = = =
c c < c
T ] T ] 8 T
- — — — —- o - o
- - - n - ©
—
[=} [=}
S] s}
— —
o % = P % = © o = 0 =
S o o S =} <
g L = SE 8 T E
N o= o o= « = N -
= © = © o
e g 2 S
S <
o o
o o
Y ° o o ) : X
= o c =) = e
) g R S8 g
) m m @ m
o o o o [ (=]
o o o o o o o o o =) o o o o o
u nmn © m O ! S o [} ©c 3888 3 8 n O ) o
.+ +d QA — 2 ) D a3 4 N N® \ - — 2
.lum [1ul 183 [1ul 1sa [1ul 1sa [1ul 1sq



[ an-on-ra (D) /0" ¥/Pu-0u-£q/s8SUBITT /310" SUOMIOd8ATISID// :d19Y 8SUSDTT (' (N-DN-AG-00 OU3} Iepun oqeTTeAe epem ST uoTsIeA jdTIosnmen STY] ‘8107 ©
T10°T0°%702"d3seL"L/9T0T"0T *10Q "$1-6 Sdded "HI0C TTIAY "TTT-QTT SSUNTO) "SOTSAG{ IIISOLIS[-IBT0S pue J1Ioydsowly jo [euinof
"W0T0RIDIUT 910UdS015USRU-PUTA TRTOS oYY JO SATI0NSTY aWry 4ndur Aq USATIP TOPOW XOpUT 4S( YIOMISU TRINSU § :YPITUYI0g Josor pue eplof ToAed ‘UORTR) UOTIPTI ‘OTTRASY SOTTH

TUT poyST{qud ATUANDASANS SEA UOTSIOA OATITUTJOp O]  SoTSAU] [PTI1S0119]-Te10g PUe JTIoUJSOUTy JO [BUINO[ UT UOTIBOTqnd I0] Poldoooe Sem 1eq] 1dTIOSHuel © Jo UOTSISA §,J0YJNe oU7 ST STYJ

, 3 2
c c
S Q 5 Q = 2 = -
= — = — 0 o
= = o [} o
o o ° <) - - 3
= I = ~
= Z — o
g - 2 g
2
o o
s} s} =
— —
— —_ — o —
o = o & = m o
© @ o o= o« =
™ 0 < = o
g g g - S o E
2 o< & ow - = o [N
© © - >
- >
8 o ) o 8 2 S
L — o
- ~ - = s 0 S | =
o o
- o - o < c 0
< « S « 5} 5} N
> >
> > mw w
mw mw
<) [ o h o o
S) o o o o ©O o o o o o o © o o o o o =) o o o
S S S =] frel m o ;n S ;b m»D & b S b =1 =1 S
- I 5] < PR = B N P T T NN =1 2 2]
B . . ' . \ ) ) \ R ) ) \ ) .
[1ul 1sa [1ul 1sa [1u]l 13 [1ul 153
o o
o
o =]
: g s 5 S i
S o — 7 7
= ]
I I~ e - o
3 ] S ©
- o - e} [=}
[ o [ o
> -~ > ™ 3
3
= = o = S =
o = © —~ o
S ) o S S]
% S m 3 3 m % N m o o m
= = — - =
o — ~ + - ™
> o
o > o W M
& 2 N o S
o -
5 s} 5 S S o
b o - =
= o
S g - § :
g 2 & @
o - E o o o
o
Sl o o o o o o o o o o o
° 8 8 8 8 S o© o o ©c 3 8 8 8 » & B © »
| - — 3 — N ® ~ | - « « ' — — N N
a0 ) ; ) . ) ) ) ) \ ) . . . )
ormi [1ul 1sg [1ul 1sa [1ul 1sg [1ul 1sa



