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Abstract:

Solar energetic particle (SEP) modelling has gained great interest in the community, specifc-

ally in connection with the safety of crews and the protection of technological systems of

spacecraft situated outside the shielding of Earth's magnetosphere. Two models for the pre-

diction of SEP events are presented in this paper. The models are based on a linear flter and

on a special type of dynamic artifcial neural network known as the layer-recurrent neural

network. In this work they use as input the following parameters: the X-ray fare class for

fares originating close to the centre of the solar diske observed type II or Ip radio burstse

and of the position angle, width and linear speed of observed full or partial halo CMEs. The

models are designed to provide forecasts of proton fuues with energies euceeding 10 Mep at

the L1 libration point.

Keywords: coronal  mass  ejection;  X-ray  flare;  solar  energetic  particles;  artificial  neural
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1. Introduction

Explosive  and high-dynamic  processes  in  the  solar  corona  and  interplanetary  magnetized

plasmas accelerate particles, such as electrons, protons, heavy ions, and neutrals up to high

energies.  Periods  of  enhanced  fluxes  of  such  particles,  especially  protons  with  energies

exceeding 10 MeV, are called solar energetic particle (SEP) events. To consider SEPs in a

space weather context is a matter of critical importance. SEPs are able to penetrate through

the protective shielding of spaceships travelling outside the Earth’s magnetosphere and can

jeopardize the lives of humans on board and damage sensitive technological systems.

It is generally acknowledged that SEPs can have harmful effects not only on spacecraft but on

aircraft crews and passengers, on communication systems, etc. They represent serious hazards

for astronauts on missions to the Moon and Mars for example planned by NASA’s “Vision for

Space Exploration,” e.g., if astronauts had been on some extra-vehicular activity on the Moon

[1, 2, etc.]. Predicting SEP events at 1 AU, and also out further, towards the orbit of Mars, is

therefore a necessary objective in the effort to minimize the dangers from SEPs to humans

and systems on such missions.

The energy of SEPs ranges from a few kiloelectronvolts  to several gigaelectronvolts.  The

fastest particles can travel with velocities of up to half the speed of light and they can reach 1

AU within 15-20 minutes after the appropriate solar event is launched. The most important

places where solar particles are accelerated are regions where solar flares occurred as well as

shocks in the solar corona and interplanetary space.

Recent data indicate that large SEP events are associated with fast and wide coronal mass

ejections (CMEs): for a comprehensive review of the CME subject see, e.g.,  [3, 4, or 5].

CME-driven  shocks  accelerate  protons,  which  are  detected  as  SEP  events.  They  also

accelerate electrons, which produce type II radio bursts, being an indicator of super-Alfvenic

mass motion [3]. Hwang et al. [1] found that there were type II radio bursts in all the largest

SEP events occurring in solar cycle 23 (1997-2006). Moving type IV radio bursts are also
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expected to be closely related to CMEs [3] because they indicate magnetized plasma ejection.

It must be emphasized that only about one per cent of the fastest CMEs produce significant

SEP events. Flares as a possible source of SEPs must be mentioned here as well. Gopalswamy

[3] describes three different current viewpoints about the flare-CME relationship. The first is

that  flares produce CMEs [6], the second, presented by Hundhausen [7] is that  flares are

byproducts of CMEs and the third point of view is that flares and CMEs are part of the same

magnetic eruption process [8, 9].

In connection with space weather,  we must state that direct injections of impulsive SEPs,

which  are  believed  to  be  connected  with  flares,  affect  only  narrow  parts  of  space.  The

impulsive events have typical durations of the order of hours and are less intense than gradual

events which can last several days [10]. Only CME-driven shocks can spread to large parts of

space and flood them with high fluxes of SEPs [11, 12, and 13].

On the other hand, some authors [14] prefer flare information (X-ray flares) as a basis for

proton event forecasting. X-ray classes (intensities of X-ray flares) together with information

about their positions on the solar disk (H-alpha flare positions) and accompanying type II

and/or IV bursts  has been found to be good input parameters  also when the geomagnetic

activity is being forecast [15, 16].

It appears to be correct that both CME and flare information are of great importance for the

forecasting of large SEP events.

It was found that the efficiency of particle acceleration is enhanced when the primary CME

runs into regions of enhanced density due to preceding CMEs or streamers [17, 1]. Thus both

impulsive flares and preceding CMEs may serve as sources of the seed particles for SEPs

accelerated by the following CME. Their effects on SEPs are similar [1].

In addition to the presence of seed particles, the physical conditions in the ambient medium

can modify the characteristics of the shocks and hence affect the intensity of SEPs [1, 18].

Hwang et al. [1] investigated SEP events of solar cycle 23 in detail. They found some special
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properties of extremely large SEP events for which proton peak intensity was over 104 pfu =

104 protons/cm2.s.sr in the > 10 MeV channel of the GOES instrument.  All of them were

associated with very fast halo CMEs (> 1400 km/s), and, except for one event, these large

events  were located  at  the  disk centre  within  a  latitude  strip  between N22 and S16,  and

longitude band between W34 and E23. All together six extremely large SEP events occurred

during solar cycle 23.

Studying SEP events for intensity > 10 pfu (which is usually considered the threshold for SEP

events), Hwang et al. [1] found a tendency that CME speed is related to the SEP time scales

(e.g., duration time of a SEP event). On the other hand, SEP peak intensity depends on the

Earthward  direction  parameter  of  the  CME,  which  is  a  parameter  quantifying  symmetric

characteristics  of  the  shape  of  the  CME [19],  together  with  the  X-ray  strength  [1].  The

statistical properties of SEPs concerning their time scales as well as intensities were studied in

[20] in the frame of the ESA SEPEM Project. 

In  order  to  study SEP events  a  modern  powerful  tool  of  advanced  statistics  is  required.

Artificial  neural  networks  can  be  the  possible  choice  to  accomplish  this  task.  A relevant

definition of a neural network (NN) which describes the subject very well can be found in

[21]: “A Neural Network is an interconnected assembly of single processing elements, units

or nodes, whose functionality is loosely based on the animal neuron. The processing ability of

the network is stored in the interunit connection strengths, or weights, obtained by a process

of  adaptation  to,  or  learning  from,  a  set  of  training  patterns.”  NNs have been trained to

perform complex  functions  in  various  fields,  including  pattern  recognition,  identification,

classification,  speech,  vision,  and  control  systems.  Today  NNs  can  be  trained  to  solve

problems that are difficult for conventional computers or human beings [22]. They have been

used in space weather studies, too [e.g., 16].

The  aim  of  this  paper  is  to  forecast  and  study  SEP events,  especially  large  ones,  using

artificial  neural  networks.  Input  parameters  are  chosen  to  be  both  solar  flare  and  CME

parameters. In large SEP events it is apparent that the way in which SEPs are accelerated by a

CME depends not only on the parameters  of the CME in question.  The preceding CMEs

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/ 



This is the author's version of a manuscript that was accepted for publication in Acta Astronautica.
The definitive version was subsequently published in:

Fridrich Valach, Miloš Revallo, Pavel Hejda, and Josef Bochníček: Predictions of SEP events by means of a linear
filter and layer-recurrent neural network.

Acta Astronautica,  Volume 69, Issue 9-10, November 2011, Pages 758-766. DOI:10.1016/j.actaastro.2011.06.003

and/or flares that occurred in the same regions have to be taken into consideration as well.

That is why we believe that special types of artificial neural networks can be helpful tools for

SEP forecasting. Dynamic networks can cope with temporal structures in studied time series.

For that reason we expect  them to be particularly  effective  for the purpose of our study.

Section 2 introduces the data used, as well as the methods of modelling based on several kinds

of NNs. The results of the study are presented and discussed in Section 3. The main findings

are summarised in Section 4.

2 Materials and methods

2.1 Data used

For SEP event modelling we considered information characterising CMEs to be important

input parameters. Only full and partial halo CMEs were used in our study; for partial halo

CMEs, only those with a width exceeding 140°. Three characteristics of the full/partial halo

CMEs were  considered:  (1.)  Position  Angle  (PA)  measured  from Solar  North  in  degrees

(counter-clockwise); (2.) Width; (3.) Linear Speed.

The Large Angle Spectrometric Coronagraph (LASCO) on board SOHO has been providing

unprecedented views of the solar corona since January 1996. In the beginning, this instrument

contained three individual coronagraphs C1, C2, and C3. However, the C1 was disabled in

June 1998.  C2 and C3 are white light coronagraphs imaging from 2 to 6 solar radii and from

3.7  to  32  solar  radii,  respectively.  Data  which  we  used  were  taken  from  [23].  The

SOHO/LASCO CME Catalog is available here [4]. The Catalog is generated and maintained

at the CDAW Data Center by NASA and The Catholic University of America in cooperation

with the Naval Research Laboratory. 

Additional information used in our study concerned solar flares. We were interested in the X-

ray flares which were observed near the centre of the solar disk (up to ±40° in heliographic

longitude and latitude) and were accompanied with radio bursts of types II or IV. The class of
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X-ray flare (XRA Class) was the quantity which was taken as an input parameter [24]. The

data  were  taken  from  daily  bulletins  issued  by  the  NOAA  Space  Environment  Center,

Boulder, Colorado, USA [25].

The quantity which we intended to model was the SEP flux represented by the flux of high-

energy protons (HEPF) with energies over 10 MeV. The SEP data are from the Solar Isotope

Spectrometer  on  the  ACE Satelite.  We have used  data  prepared  and issued daily  by  the

NOAA Space Environment Center (files YYYYMMDD_ace_sis_5m.txt) [26]. Daily values

were averaged from 5 minute values published in the daily reports.

For this  study we focused on the years 1998-2005. The reason is  the frequency of CME

occurrence. During these solar maximum years full or partial halo CMEs appeared frequently,

approximately one event every 36 hours. 

2.2 Patterns for neural networks

Daily  characteristics  of  CMEs,  solar  flares  and  SEPs  were  used  in  the  modelling.  The

characteristics  of  CMEs  and  flares  were  used  as  input  parameters  to  the  neural  network

models. SEP characteristics were used as output parameters.

For SEPs (HEPF) the daily mean values were computed in a simple way as the average value

of  HEPF>10MeV  throughout  the  day.  There  were,  however,  some  gaps  in  data  sets.

Therefore, for some days the mean values had to be computed using incomplete data. In these

instances the means were computed using all available data. At times there were data gaps

covering  several  days.  Fortunately,  they  fell  within  the  periods  when  no  significant

enhancements of SEP fluxes occurred; we deduced this overlooking the data of the previous

and following days, respectively. In these cases the interpolated values based on the previous

and following daily mean values of HEPF were adopted. Inspecting the GOES proton data

[27] we confirmed that no considerable SEP event has been omitted from our data base.
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A more complicated task was preparing the daily characteristics of the CMEs and flares. This

was due to there being days when neither halo CME nor significant flare occurred. On the

other hand, there were also days when two or more of such events occurred. We solved the

problem in the following way.

We established four pieces of information about full or partial halo CMEs on a given day as

input parameters for our neural network models:

1. The position angle of the most important CME. If more than one CME occurred, the one

with the greater width was considered to be more important. The position angle is not given

for full halo CMEs; in such cases the value -360 is taken as the model input.

2. The greatest width of the CME which was observed on a given day.

3.  The  linear  speed  of  the  most  important  CME  (the  one  with  the  greater  width  was

considered to be more important).

4. The number of CMEs which were observed during a given day.

If no halo CME was observed during the day, these four parameters were set to 0 (zero).

We also established four pieces of information about X-ray flares (XRAs) on a given day as

input parameters for our neural network models:

1. The class of the most important X-ray flare (XRA class) which was observed close to the

centre of the solar disk (±40°). 

2. Information about the type II radio burst (RPS II) accompanying the X-ray flare. The value

is set to 1 or 0 if RSP II was or was not observed, respectively.

3. Information about the type IV radio burst (RPS IV) accompanying the X-ray flare. The

value is set to 1 or 0 if RSP IV was or was not observed, respectively.

4. The number of X-ray flares which were observed close to the centre of the solar disk.

If no flare was observed during the day, these four parameters were set to 0 (zero).

The decision about which flare is the most important (if there were more than one XRA close

to the centre  of solar  disk) was made according to the conclusions made by  [15,  16] for
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geomagnetic activity forecast purposes. The first criterion was information about RSP IV; the

most important flare event was often found to be accompanied by it. If this criterion did not

help us to decide, then we took a decision in regard to the XRA classes; the higher the class

the  more  important  the  XRA.  Only  if  these  two criteria  failed  did  we resolve  the  issue

according to the information about RSP II so that the most important XRA was accompanied

by it.  As an illustrative  example,  let  us consider  six  XRAs of  class  B or  stronger  which

occurred near the solar disk centre on October 29, 2003. However, only those accompanied by

RSP II and/or RSP IV are interesting for this study. There were two such events on that day:

 XRA of class M3 accompanied by RSP IV

 XRA of class X1 accompanied by both RSP II and RSP IV

Which of them is of most importance for our study? The first criterion states that the events

accompanied  by RSP IV are  more  important  than  those  without  RSP IV.  Thus  the  first

criterion does not answer the question. Therefore we have to compare the XRA classes of the

events (second criterion). The XRA with the X1 class is chosen to be the most important

event of the day. In a hypothetical case if even the XRA classes are equal, the most important

event would then be the one accompanied by RSP II (third criterion).

2.3 Neural network models

The definition of an artificial neural network (NN) is introduced at the end of Section 1. There

are many specialized software products which can interface with NN’s. For the purposes of

this paper Matlab software was used with its Neural Network Toolbox 5 [22].

After the gaps from the data sequence were removed, a quasi-continuous sequence of 1978

patterns was at our disposal. Handling the neural networks one usually needs to have three

segregated sets of patterns: 1. those intended for the training process (training patterns), 2.

those  dedicated  to  estimating  an  optimal  architecture  of  the  network  and  the  training

parameters (so-called validation patterns), and 3. those reserved for some final tests (final test

patterns). Schmid [28] suggests that the whole set of patterns has to be split to the training,
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validation, and final-test subsets in proportion 3 : 1 : 2, respectively. We divided the sequence

of patterns in such a way that the three subsets contain the cases of the most significant HEPF

enhancements  distributed  according  to  the  required  proportion.  First  480  patterns  were

assigned to  the  validation,  then  740 patterns  were  allocated  for  training,  and finally  758

patterns were custom made to the independent final test.

In the following, four NN models are considered and their results are presented. Section 2.3.1

introduces two models based on linear filters. In Section 2.3.2, a more advanced model of the

NN is  adopted  where  a  new layer  of  so-called  hidden  neurons  is  added  to  the  network

architecture.  A more sophisticated NN model based on recurrent network is dealt  with in

Section 2.3.3.

2.3.1 Linear filters

Linear filters were the simplest neural network models which we employed. They represent a

class of neural network without so-called hidden neurons [21, 22]. This fact disables them to

solve linearly non-separable problems [21], which is a drawback. However, their advantage

consists  in  their  simplicity.  The  networks  were  fed  by  the  aforementioned  eight  input

parameters concerning CMEs and XRAs. The model was trained to provide one-step-ahead

predictions of HEPF > 10 MeV. That means that the predictions based on the data from the

previous 24-hour interval were directed immediately at the succeeding 24-hour interval.

First the training was set up to use training patterns. In so doing we compared the results

obtained involving a different history of input parameters. This means that beside the data

from the previous 24-hour interval we also tried to involve older data about CMEs and XRAs,

specifically, we also tried to include the data of 0, 1, 2,…, and of 12 previous days. In this

way the linear filter became a dynamic linear filter. The performances of the 13 models on the

validation patterns were compared with each other.

The quality of the linear-filter models as a function of the history length of input parameters

was investigated on validation patterns.  The method of quality classification was a simple

subjective estimation in the course of comparing the graphs with each other. It turned out that
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the best results were obtained for the plainest model, which did not consider more data from

previous days. Together with this best linear model there was also a model including eight

more previous days’ data as inputs. We deemed these two networks to be the best – a linear

filter without history (LF0) and a linear filter with an 8-day history (LF8). So as to utilize the

maximum information contained in both validation and training patterns,  we executed the

training for LF0 and LF8 again utilizing a joint set of patterns comprised of both validation

and training patterns.  

2.3.2 Neural network with hidden neurons

Neural network with hidden neurons (HNN) is a higher level of artificial neural networks.

Hidden neurons enable the network to solve the linearly non-separable class of problems [21].

The training process is numerically much more complicated than that of linear filters. Here we

had three unknown parameters of an optimal neural network instead of one (compared with

linear filters where there was only one unknown parameter, i.e., the history of inputs). We had

to find an optimal length of history which must be included with the input of the model; we

had to do it because from the linear filtering no definite answer arose. In addition, we had to

estimate  the  proper  number  of  hidden neurons as  well  as  an  optimal  number  of  training

epochs  (for  a  more  detailed  explanation,  see  e.g.,  [21,  22,  and  28]).  The  procedures  for

searching the optimal parameters were similar to those made for linear filters but in this case

we trained 990 neural networks. The history was changed from 0 to 8 (which came from the

results of the linear filters), the number of hidden neurons varied from 2 to 12, and we tried 10

different numbers of training epochs ranging from 5 to 200.

From the test on the validation patterns we learned that the optimal parameters of the neural

network with one hidden layer are as follows: (1) A history of input parameters (information

about CMEs and XRAs) has to include six days beside the data from the previous 24-hour

interval. (2) Two neurons on the hidden layer are sufficient. (3) The training process has to be

suspended after 15 epochs if trained on the set labelled as training patterns in the above text.
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These optimal parameters were adopted for the new neural network model. We used the joint

set of patterns comprised of both validation and training patterns for the new training process.

Because the new set of patterns employed for training consists of more patterns than were in

the old set, the number of training epochs was adjusted properly so as to avoid an overfitting;

12 epochs were run instead of 15. Because the result of the training processes for this kind of

network depends a little on the initial  values of the weights (they are set randomly at the

beginning of the training  process),  we trained 11 networks instead  of a  single one.  As a

model, output medians of the 11 NN’s were considered.

2.3.3 Recurrent network

The recurrent network can be regarded to be an advanced neural network with a hidden layer.

Some structures are incorporated in the architecture of the network which makes it possible to

deal with the history of input parameters beside their actual values [21]. There is no need to

search for an optimal length of the history, as required in the previous procedures. However,

the training process takes much longer than the training of an ordinary neural network [22].

We needed to find the optimal number of hidden neurons and the number of training epochs.

This  procedure  followed  the  previous  ones.  All  together  105  NN’s  were  trained  on  the

training patterns, the number of hidden neurons changing from 2 to 10, while the numbers of

training epochs were in the range of 10 to 50. The optimal NN’s parameters were estimated

on validation patterns which are two neurons in the hidden layer and 12 training epochs. 

The estimated optimal parameters were adopted for the new recurrent network (RNN) model.

Again we used the joint set of patterns comprised of both validation and training patterns for

the new training process. The number of training epochs was reduced to nine. Because of the

slight influence of the initial values of the weights, we trained 11 networks and medians of the

11 NN’s were considered as a final output.
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3 Results and discussion

All results presented in this section were computed for the final test patterns, labelled as such

in the above text. These patterns were used neither in the training process nor for validation.

Therefore  the  final  test  is  considered  to  be  independent.  The  question  about  the  model

accuracy can be addressed when a real practical  use is simulated.  Here we proposed two

recipes on how the models could be used in practice, followed by a summary of successes and

failures.

We imagined a situation of how our models would be used if a spacecraft travelling outside

the Earth’s magnetosphere had to perform safety measures against SEP events. One example

is whether or not an astronaut could be sent into free space outside the protected spacecraft.

For  this  example  we examined  two different  levels  of  safety  measures  which  we named

Recipe A and Recipe B, respectively.

Recipe A is the simple instruction for performing safety measures if a critical level of HEPF

forecast is exceeded during the following 24 hours from a given start time.

Recipe B is a more careful plan.  The safety measure is imposed for the ensuing 24 hours

when the models forecast an overload of the critical HEPF level during the 24-hour interval.

This also applies when the overload was forecast for the previous 24-hour interval (whether it

took place or not), and also if the overloaded HEPF was observed during the previous 24

hours. For both the successive 24-hour intervals, the same critical level of HEPF is prescribed.

Some statistics  comparing  the  success  of  the  four  NN models  presented  in  the  previous

Section (LF0, LF8, HNN, and RNN) for Recipes A and B are listed in Table 1. The models

were run over the test period 13/08/2003 – 26/11/2005. Critical levels of HEPF were set to be

100, 200, 500, and 1000 pfu.
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Surprisingly,  the  most  convincing  results  appeared  to  be  obtained  when the  plainest  NN

model, i.e., linear filter fed with the CME and XRA information of the past 24-hour interval,

was employed (Figure 1 and for more details see also Figure 2). However, more detailed

scrutiny of the results (Table 1) reveals that the good score of the days with SEP events when

a  safety  measure  was  performed  are  at  the  expense  of  the  rate  of  days  when  the  safety

measure was not performed. On the other hand, the recurrent network provides the forecasts

(Figures  1  and  2)  which lead to  the smallest  waste  of time with some “feasible”  hazard

(Table 1).

A compromise between “too cautious” LF0 and “saving-time” RNN models can be achieved

by averaging their outputs. The statistics of such a combined model (LF0-RNN) seems to be

the most satisfying (Table 2).

It must be noted that Recipe B is the more convenient instruction for practical demands than

Recipe A. It can be explained by the time resolution of the day-long data used in the study. 

Moreover,  present  conditions  suggest  the  danger  could  also  continue  the  following  day.

Hence adopting such an intuitive consideration to the instruction (Recipe B) could increase

the safety of crews and technical equipment of spacecraft.  

Some papers (e.g., [29]) define SEP events to be the enhancements of HEPF which represent

the critical level of the flux equal to about 10 pfu. In this sense the models proposed here are

intended to be restricted only to large SEP events. The noise which spoils the model outputs is

of a level comparable to or exceeding 10 pfu.

In order to be able to compare our results with some standard, we calculated (the last columns

in  Tables 1 and  2) the Hanssen-Kuiper skill score (KSS), known also as true skill statistic

(TSS). It is defined by the formula

KSS = (ad - bc ) / [(a + c)(b + d)],

where a is the number of hits (correctly forecast SEP events), b is the number of false alarms,

c is the number of missing alerts, and  d is the number of correct non-event forecasts. The
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values of KSS range from -1 to 1. Value 1 means a perfect score while value 0 stands for no

skill level.

The values of  KSS were calculated for the test period 13/08/2003 – 26/11/2005. With the

combined model LF0-RNN and the Recipe B employed, KSS equals 0.66, 0.87, 0.72, and 0.45

for SEP threshold values 100 pfu, 200 pfu, 500 pfu, and 1000 pfu, respectively (Table 2).

First three of these values seem to be better than KSS = 0.54 which can be calculated for the

forecasts of SEP events referred by Kahler et al. [29]. It has to be reminded, however, that

Kahler et al. [29] dealt with SEP events defined with threshold value 10 pfu, while we studied

much stronger events in this paper.

In the data sets used for the input data preparation many gaps were present. Sometimes the

gaps  overran  one  or  more  days.  This  is  an  unpleasant  fact  when  using  dynamic  neural

networks where one relies on continuous data sequences. We were forced to bridge the gaps

each time a gap exceeded one day. This one-day critical threshold was chosen because CMEs

occurred with the frequency of approximately one event every 36 hours. In such a manner the

corruption of the time series for the dynamic neural networks is quite tolerable if it does not

appear too often. In the opposite instance, many discontinuities would constitute a disturbance

and hence a problem for dynamic networks.

One more interesting feature of the NN’s with hidden layers, which appeared to be the best

(HNN, RNN), is  that  these layers consist  of only two neurons.  It  might  indicate  that  the

relations  among  the  studied  CME,  XRA,  and  SEP  parameters  are  not  too  complicated,

however, it might also arise from contradictory data in some cases.

4 Conclusions

The work that has been presented is based on four neural network models:

 LF0 (Linear filter without history)

 LF8 (Linear filter with an 8-day history)

 HNN (Neural network with hidden neurons)

 RNN (Recurrent neural network)
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The final model, LF0-RNN, combining the linear filter fed with CME and XRA information

obtained during the previous 24-hour interval and the layer-recurrent neural network fed with

the sequence of the same information proved to be the best way to forecast severe SEP events.

We propose  to  issue  an  alert  for  a  succeeding  24 hour  period  if  the  model  forecasts  an

overload of the critical  HEPF level during that period, as well  as when the overload was

forecast for the previous 24-hour interval,  and also if the overloaded HEPF was observed

during the stated interval.

If the critical level of HEPF was set to be 100 pfu, 28 SEP events were foreseen in time out of

the 34 SEP total events occurring during the test period. It was carried off at the toll of 116

false alarms. In doing so, the rate of days when the safety measure was performed constituted

19% of all the tested days. The results obtained were still more encouraging when the critical

level of HEPF was heightened to 200 pfu.

In this study, the prediction of SEP events has been performed, with focus on continuous time

series rather than single solar SEP events. As for the single events approach, there can be

difficulties to distinguish between the response of particular solar energetic particle events in

case  of  their  successive  emergence.  The  response  of  interplanetary  medium  can  be

complicated by its "memory" effects, and therefore the forecast of SEP events should rely not

only on current  solar  event  data  but  should also consider  the  influence of  past  SEP data

records. In this study, we attempted to make a contribution to this task with the use of so-

called dynamic neural networks (LF8, HNN, and LRN) which considered the history of input

parameters. The focus has been put on continuous time series rather than single solar SEP

events. The new approach used here was the pre-processing of the input data. To characterise

the solar flares and CMEs, special measures have been introduced as quantities characterising

one-day-period intervals.

The successful  and reliable  forecast  of  SEP events  can  be  a  complicated  enterprise.  The

approach undertaken in this work can be beneficial for SEP modellers and forecasters. For

future  work  the  questions  arise:  How  much  more  additional  information  needs  to  be
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considered to improve the forecast? Is it even possible to improve forecasts using the scheme

proposed in the underlying study? The questions will be left for future research investigations

to answer.
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Table  1. Comparison  of  neural-network  models  performances  for  several  chosen  critical
HEPF levels.  (HEPF are  given in  pfu = particles/cm2.s.sr).  Statistics  of  alerts  announced
following  Recipes  A and  B,  respectively,  and  using  four  NN models  are  compared.  All
together  754  forecasts  were  carried  out  during  the  test  period  13/08/2003  –  26/11/2005.
During this interval, the thresholds for SEP events fixed at 100 pfu, 200 pfu, 500 pfu, and
1000 pfu were exceeded for 34, 19, 12, and 11 days, respectively.
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A 100 LF0 21 77 21.5 13.0 13 645 1.98 0.51

LF8 18 199 8.3 28.7 16 523 2.97 0.25
HNN 4 19 17.4 3.0 30 703 4.09 0.09
RNN 18 33 35.3 6.7 16 689 2.27 0.48

200 LF0 12 52 18.7 8.5 7 685 1.01 0.56
LF8 13 121 9.7 17.7 6 616 0.96 0.52
HNN 3 13 18.7 2.1 16 724 2.16 0.14
RNN 8 11 42.1 2.5 11 726 1.49 0.41

500 LF0 5 19 20.8 3.2 7 725 0.96 0.39
LF8 5 49 9.3 7.1 7 695 1.00 0.35
HNN 1 12 7.7 1.7 11 732 1.48 0.07
RNN 0 0 --- 0.0 12 744 1.59 0.00

1000 LF0 2 6 25.0 1.1 9 739 1.20 0.17
LF8 0 8 0 1.1 11 737 1.47 -0.01
HNN 1 11 8.3 1.6 10 734 1.34 0.08
RNN 0 0 --- 0.0 11 745 1.45 0.00

B 100 LF0 29 142 17.0 22.6 5 580 0.85 0.66
LF8 28 278 9.1 40.5 6 444 1.33 0.44
HNN 19 44 30.2 8.3 15 678 2.16 0.50
RNN 26 61 29.9 11.5 8 661 1.20 0.68

200 LF0 18 94 16.1 14.8 1 643 0.15 0.82
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LF8 18 176 9.3 25.7 1 561 0.18 0.71
HNN 12 28 30.0 5.3 7 709 0.98 0.59
RNN 14 25 35.9 5.2 5 712 0.70 0.70

500 LF0 9 40 18.4 6.5 3 704 0.42 0.70
LF8 11 79 12.2 11.9 1 665 0.15 0.81
HNN 8 24 25.0 4.2 4 720 0.55 0.63
RNN 6 6 50.0 1.6 6 738 0.81 0.49

1000 LF0 6 17 26.1 3.0 5 728 0.68 0.52
LF8 5 20 20.0 3.3 6 725 0.82 0.43
HNN 7 22 24.1 3.8 4 723 0.55 0.61
RNN 5 6 45.5 1.5 6 739 0.80 0.45
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Table 2.  Comparison of combined LF0-RNN model performances for several chosen critical
HEPF levels.  (HEPF are  given in  pfu = particles/cm2.s.sr).  Statistics  of  alerts  announced
following Recipes A and B, respectively.
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A 100 20 63 24.1 11.0 14 659 2.08 0.50
200 12 29 29.3 5.4 7 708 0.98 0.59
500 2 10 16.7 1.6 10 734 1.34 0.15
1000 0 0 --- 0.0 11 745 1.46 0.00

B 100 28 116 19.4 19.0 6 606 0.98 0.66
200 18 59 23.4 10.2 1 678 0.15 0.87
500 9 23 28.1 4.2 3 721 0.41 0.72
1000 5 6 45.5 1.5 6 739 0.81 0.45
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The captions of the figures:

Figure 1

Time series of SEP fluxes for the final test (13/08/2003 – 26/11/2005). Observed values are

compared with those obtained as predictions of the linear filter (LF0) as well as with those

modelled by the recurrent network (RNN).  (Note: Some interesting parts of these series are

shown in more detail on Figure 2).

Figure 2

Detailed views of some parts of the test time series of SEP fluxes when there were increased

values of HEPF > 10 MeV. The SEP fluxes modelled by the linear filter (LF0) as well as with

the recurrent network are compared with the observed fluxes. The subplots in the figure depict

the  time  series  on  about  28/02/2003 (a),  27/07/2004 (b),  13/09/2004  (c),  10/11/2004  (d),

17/01/2005 (e), 15/05/2005 (f), 15/07/2005 (g), and 11/09/2005 (h), respectively. The legend

of the pictures is given in the right bottom panel.
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